Viscosity solutions to first order path-dependent Hamilton–Jacobi–Bellman equations in Hilbert space

نویسندگان

چکیده

In this article, a notion of viscosity solutions is introduced for first order path-dependent Hamilton–Jacobi–Bellman (PHJB) equations associated with optimal control problems evolution in Hilbert space. We identify the value functional as unique solution to PHJB without assumption (A.4) on page 231 Li and Yong (1995). also show that our consistent corresponding classical solutions, satisfies stability property.

منابع مشابه

The solutions to some operator equations in Hilbert $C^*$-module

In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.

متن کامل

Viscosity approximation methods for W-mappings in Hilbert space

We suggest a explicit viscosity iterative algorithm for nding a common elementof the set of common xed points for W-mappings which solves somevariational inequality. Also, we prove a strong convergence theorem with somecontrol conditions. Finally, we apply our results to solve the equilibrium problems.Finally, examples and numerical results are also given.

متن کامل

Second-Order Elliptic Integro-Differential Equations: Viscosity Solutions' Theory Revisited

The aim of this work is to revisit viscosity solutions’ theory for second-order elliptic integrodifferential equations and to provide a general framework which takes into account solutions with arbitrary growth at infinity. Our main contribution is a new Jensen-Ishii’s Lemma for integro-differential equations, which is stated for solutions with no restriction on their growth at infinity. The pr...

متن کامل

Solving multi-order fractional differential equations by reproducing kernel Hilbert space method

In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...

متن کامل

Rational solutions of first-order differential equations∗

We prove that degrees of rational solutions of an algebraic differential equation F (dw/dz,w, z) = 0 are bounded. For given F an upper bound for degrees can be determined explicitly. This implies that one can find all rational solutions by solving algebraic equations. Consider the differential equation F (w′, w, z) = 0, (w′ = dw/dz) (1) where F is a polynomial in three variables. Theorem 1 For ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Automatica

سال: 2022

ISSN: ['1873-2836', '0005-1098']

DOI: https://doi.org/10.1016/j.automatica.2022.110347